- サイズ:4.5×4×3.5cm
- 内容量:2個入
- 取付方法:粘着テープ
- 耐荷重:2個で2kg
- 強力バネでのれん棒をピタッとはさむ。
- 取付けられる所:柱、プリント合板、化粧合板、タイル、ガラス、ステンレス、冷蔵庫・洗濯機などの金属塗装面、塗装のしていないコンクリート
- 取付けられない所:布壁、壁紙、ビニル壁紙、土壁、しっくい、モルタル、塗装壁、塗装合板、キッチン・浴室などで特に水滴のつく所、水のかかる所、レンジ・ストープなどで高温になる場所、模様のあるタイル
商品の説明
【まとめ】三角比の値~マイナーな角度の三角比まで表形式で紹介~
0°から90°までの三角比の値。数学Ⅰで学ぶのは0°、30°、45°、60°、90°の5つです。しかし、これらの角以外にも小数を使わずに正確な値を出せる角度があります。それらの値について、表形式でまとめました。リンク先の個別ページでは、値の出し方まで解説しています。レック のれん掛け 粘着 テープ
100種類以上あると言われる三平方の定理の証明の中から有名なものを抜粋。さらに、必要な予備知識の対象学年で、証明を分類。証明の複雑さや美しさも、主観で5段階評価しました。この記事を読むことで、自分に合った三平方の定理の証明方法が見つけられます。倍数判定法~7の倍数や11の倍数にも見分け方はある!? 証明含めて様々な倍数判定法を解説~
2の倍数かどうかは下1桁で、3の倍数かどうかは各桁の和でわかりますが、7の倍数や11の倍数はどう判定するのでしょうか? 各判定法の証明や必ず覚えるべきものを現役数学教員が解説。必要な判定法を覚えて、約分や素因数分解を効率的に行えるようになりましょう。正五角形の作図
内角が72°という半端な角を持つ正五角形。対角線に注目すると、定規とコンパスだけで作図をすることができます。その方法を解説するとともに、ピタゴラスについて触れます。数学史6-5 三大作図問題と3つの議題
古代ギリシャでは、三大作図問題をはじめとする6つの大きな問題が数学者の関心を集めていました。 この記事では、それら1つ1つの概要について解説します。正五角形と黄金比
人々が美しいと感じる黄金比。正五角形に関する黄金比の性質を紹介します。 【Ⅰ 黄金比とは?】 まずは黄金比そのものについて確認しておきます。 黄金比 次の値で表...数学史6-4 ~ギリシャ時代(ピタゴラス)~
知名度 No.1 の数学者ピタゴラス。 その生涯と功績を辿ります。 ←前回 数学史6-3 ~ギリシャ時代(タレス)~ 次回→ 数学史6-5 ~ギリシャ時代(三大作図問題...タレスの定理
古代ギリシャの数学者タレスの名を冠する定理は5つあります。 タレスの功績にも触れながら、それぞれの定理について解説していきます。 【Ⅰ 最も有名なタレスの定理...レック のれん掛け 粘着 テープ
歴史上初めての数学者として登場するタレス。 その生涯と功績を辿ります。 ←前回 数学史6-2 ~ギリシャ時代(数字)~ 次回→ 数学史6-4 ~ギリシャ時代(ピ...数学史6-2 ~ギリシャ時代(数字)~
古代ギリシャでは2種類の数字がありました。 それぞれの数字の使い方や、その成立の歴史について解説します。 ←前回 数学史6-1 ~ギリシャ時代(歴史)~ 次回...

数学を歴史から学ぶ